来源:互联网 更新时间:2025-07-18 12:32
PointPillars是一个基于点云的快速目标检测网络,在配置为Intel i7 CPU和1080ti GPU上的预测速度为62Hz,在无人驾驶领域中常常能够使用上它,是一个落地且应用广泛的一个3D快速目标检测网络。
PointPillars是一个基于点云的快速目标检测网络,在配置为Intel i7 CPU和1080ti GPU上的预测速度为62Hz,在无人驾驶领域中常常能够使用上它,是一个落地且应用广泛的一个3D快速目标检测网络。 PointPillars网络的一个非常好的落地应用:Apollo 6.0 lidar中的detector部分
网络能对点云图进行3D快速目标检测:
!rm -rf kitti/!mkdir -p kitti/training/velodyne_reduced!mkdir -p kitti/testing/velodyne_reduced登录后复制In [ ]
!unzip data/data50186/data_object_calib.zip -d kitti/登录后复制In [ ]
!unzip data/data50186/image_training.zip -d kitti/training/!unzip data/data50186/data_object_label_2.zip -d kitti/training/!unzip data/data50186/velodyne_training_1.zip -d kitti/training/!unzip data/data50186/velodyne_training_2.zip -d kitti//training/!unzip data/data50186/velodyne_training_3.zip -d kitti/training/登录后复制In [ ]
!unzip data/data50186/image_testing.zip -d kitti/testing/!unzip data/data50186/velodyne_testing_1.zip -d kitti/testing/!unzip data/data50186/velodyne_testing_2.zip -d kitti/testing/!unzip data/data50186/velodyne_testing_3.zip -d kitti/testing/登录后复制In [ ]
!mv kitti/training/training/* kitti/training/!rm -rf kitti/training/training/!mv kitti/testing/testing/* kitti/testing/!rm -rf kitti/testing/testing/登录后复制In [ ]
!mkdir kitti/training/velodyne!mv kitti/training/velodyne_training_1/* kitti/training/velodyne/!mv kitti/training/velodyne_training_2/* kitti/training/velodyne/!mv kitti/training/velodyne_training_3/* kitti/training/velodyne/!rm -rf kitti/training/velodyne_training_1!rm -rf kitti/training/velodyne_training_2!rm -rf kitti/training/velodyne_training_3!mkdir kitti/testing/velodyne!mv kitti/testing/velodyne_testing_1/* kitti/testing/velodyne!mv kitti/testing/velodyne_testing_2/* kitti/testing/velodyne!mv kitti/testing/velodyne_testing_3/* kitti/testing/velodyne!rm -rf kitti/testing/velodyne_testing_1!rm -rf kitti/testing/velodyne_testing_2!rm -rf kitti/testing/velodyne_testing_3登录后复制
!pip install shapely pybind11 protobuf scikit-image numba pillow fire scikit-image登录后复制
对KITTI数据集进行处理。
In [1]%cd pointpillars/登录后复制In [ ]
!python create_data.py create_kitti_info_file --data_path=kitti登录后复制In [ ]
!python create_data.py create_reduced_point_cloud --data_path=kitti登录后复制In [ ]
!python create_data.py create_groundtruth_database --data_path=kitti登录后复制
!rm -r ./params/model!python train.py train --cfg_file=./params/configs/pointpillars_kitti_car_xy16.yaml --model_dir=./params/model登录后复制
step=2, steptime=4.51, cls_loss=4.61e+02, cls_loss_rt=3.25e+02, loc_loss=23.5, loc_loss_rt=25.9, rpn_acc=0.253, prec@10=0.00382, rec@10=0.978, prec@30=0.0038, rec@30=0.919, prec@50=0.00402, rec@50=0.776, prec@70=0.00446, rec@70=0.491, prec@80=0.0052, rec@80=0.375, prec@90=0.00599, rec@90=0.232, prec@95=0.00588, rec@95=0.132, loss.loc_elem=[1.65, 1.5, 1.39, 1.61, 1.78, 1.59, 3.41], loss.cls_pos_rt=2.57e+02, loss.cls_neg_rt=68.0, loss.dir_rt=1.71, num_vox=11987, num_pos=87, num_neg=16460, num_anchors=16680, lr=0.0002, image_idx=Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, [2156])step=4, steptime=5.91, cls_loss=3.5e+02, cls_loss_rt=2.16e+02, loc_loss=23.9, loc_loss_rt=23.3, rpn_acc=0.339, prec@10=0.00442, rec@10=0.958, prec@30=0.00439, rec@30=0.872, prec@50=0.00457, rec@50=0.669, prec@70=0.00504, rec@70=0.356, prec@80=0.00547, rec@80=0.241, prec@90=0.00625, rec@90=0.141, prec@95=0.00663, rec@95=0.0843, loss.loc_elem=[1.31, 1.61, 1.22, 1.38, 1.49, 1.43, 3.2], loss.cls_pos_rt=1.67e+02, loss.cls_neg_rt=48.6, loss.dir_rt=1.4, num_vox=12134, num_pos=104, num_neg=28902, num_anchors=29156, lr=0.0002, image_idx=Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, [2865])step=6, steptime=4.38, cls_loss=2.91e+02, cls_loss_rt=1.88e+02, loc_loss=23.2, loc_loss_rt=20.4, rpn_acc=0.416, prec@10=0.00414, rec@10=0.951, prec@30=0.00405, rec@30=0.84, prec@50=0.00437, rec@50=0.602, prec@70=0.00533, rec@70=0.303, prec@80=0.00576, rec@80=0.194, prec@90=0.00664, rec@90=0.109, prec@95=0.00687, rec@95=0.0621, loss.loc_elem=[1.26, 1.02, 1.2, 1.2, 1.27, 1.15, 3.09], loss.cls_pos_rt=1.44e+02, loss.cls_neg_rt=43.6, loss.dir_rt=1.15, num_vox=14429, num_pos=95, num_neg=26713, num_anchors=26951, lr=0.0002, image_idx=Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, [7461])step=8, steptime=4.34, cls_loss=2.41e+02, cls_loss_rt=86.1, loc_loss=21.7, loc_loss_rt=18.3, rpn_acc=0.505, prec@10=0.00402, rec@10=0.951, prec@30=0.00393, rec@30=0.818, prec@50=0.00439, rec@50=0.527, prec@70=0.00527, rec@70=0.242, prec@80=0.00567, rec@80=0.15, prec@90=0.00651, rec@90=0.0817, prec@95=0.00678, rec@95=0.046, loss.loc_elem=[0.927, 1.13, 1.04, 1.11, 1.09, 1.11, 2.73], loss.cls_pos_rt=64.0, loss.cls_neg_rt=22.1, loss.dir_rt=1.61, num_vox=10764, num_pos=96, num_neg=27143, num_anchors=27391, lr=0.0002, image_idx=Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, [6295])step=10, steptime=6.53, cls_loss=2.07e+02, cls_loss_rt=68.9, loc_loss=20.1, loc_loss_rt=11.7, rpn_acc=0.597, prec@10=0.00373, rec@10=0.948, prec@30=0.00372, rec@30=0.785, prec@50=0.00438, rec@50=0.459, prec@70=0.0053, rec@70=0.204, prec@80=0.0056, rec@80=0.123, prec@90=0.00642, rec@90=0.0664, prec@95=0.00672, rec@95=0.0374, loss.loc_elem=[0.542, 0.715, 0.656, 0.708, 0.654, 0.682, 1.91], loss.cls_pos_rt=50.4, loss.cls_neg_rt=18.6, loss.dir_rt=0.901, num_vox=13760, num_pos=73, num_neg=37547, num_anchors=37763, lr=0.0002, image_idx=Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, [4677])step=12, steptime=4.59, cls_loss=1.8e+02, cls_loss_rt=43.2, loc_loss=19.3, loc_loss_rt=16.1, rpn_acc=0.668, prec@10=0.00353, rec@10=0.947, prec@30=0.00356, rec@30=0.731, prec@50=0.00442, rec@50=0.404, prec@70=0.00536, rec@70=0.177, prec@80=0.00562, rec@80=0.105, prec@90=0.00643, rec@90=0.0562, prec@95=0.0067, rec@95=0.0314, loss.loc_elem=[0.94, 1.0, 0.978, 0.927, 0.933, 0.843, 2.44], loss.cls_pos_rt=30.7, loss.cls_neg_rt=12.6, loss.dir_rt=1.17, num_vox=15485, num_pos=104, num_neg=26403, num_anchors=26661, lr=0.0002, image_idx=Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, [724])step=14, steptime=4.47, cls_loss=1.6e+02, cls_loss_rt=32.9, loc_loss=18.6, loc_loss_rt=14.5, rpn_acc=0.71, prec@10=0.00351, rec@10=0.934, prec@30=0.00355, rec@30=0.669, prec@50=0.00444, rec@50=0.354, prec@70=0.00537, rec@70=0.153, prec@80=0.00565, rec@80=0.0913, prec@90=0.00647, rec@90=0.0489, prec@95=0.00678, rec@95=0.0275, loss.loc_elem=[1.03, 0.846, 0.812, 0.898, 0.903, 0.875, 1.89], loss.cls_pos_rt=21.6, loss.cls_neg_rt=11.3, loss.dir_rt=0.877, num_vox=13753, num_pos=93, num_neg=37505, num_anchors=37749, lr=0.0002, image_idx=Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, [906])登录后复制
因为这个写的比较匆忙,可能还有bug没修复,欢迎大佬们来尝试然后给我们提提意见哈哈,预测版本稍后会写出来(其实已经在代码里了,不过还没有fix)。 我们的项目的GitHub地址:AgentMaker/PAPC
论文 nutonomy/second.pytorch mmlab/mmdetection3d SmallMunich/nutonomy_pointpillars hova88/Lidardet
悟空浏览器网页版:免费畅游网络世界的极速入口
豆包AI安装需要哪些运行时库 豆包AI系统依赖项完整清单
2025迷你世界雨薇免费激活码
2025崩坏星穹铁道7月3日兑换码
Perplexity AI比Google好吗 与传统搜索引擎对比
ChatGPT如何生成产品原型 ChatGPT产品设计辅助功能
哔哩哔哩教程哪里找
蚂蚁庄园今日最新答案7.10
光遇6.19大蜡烛在哪里
《怪物乐土》哥布林猎手光暗选择技能加点
小米在全球范围推送澎湃OS 2.2 这几款机型现可升级
iPhone11promax升级iOS 17.2之后怎么样
iPhone15pro怎么拍动态照片?
2025原神7月2日兑换码分享
如何轻松在iPhone上安装DeepSeek
光遇7.8免费魔法是什么
剪映人像虚化怎么使用 剪映人像虚化使用方法
iPhone15 Pro Max屏幕一直亮着是什么原因
Edge浏览器怎么关闭某个进程
qq音乐怎么免费听歌?qq音乐免费听歌教程
手机号码测吉凶
本站所有软件,都由网友上传,如有侵犯你的版权,请发邮件haolingcc@hotmail.com 联系删除。 版权所有 Copyright@2012-2013 haoling.cc